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FILTERING FOR LINEAR DISTRIBUTED PARAMETER SYSTEMS
Harold J._Kushner

1, Introduction

The systems to be considered are described by parabolic equations
with 'white noise' inputs. We are interested in conditions which
guarantee that the solution U(x,t), a random surface, has certain
smoothness properties, and also in the,smoothness properties of the con-
ditional expectation E[U(x,t)| given data up to t]. Such results are
developed in [1], [2] using the Sobolev imbedding theorem.

First,some of these results will be stated. A system modei (first
boundary value problem) is discussed in Section 2, Lemma 3. The noisy
observations for this problem have the form (7). Lemma 4 proves the
smoothness of the conditional mean and covariance, and Theorem 1 gives
the form of the optimal filter., Section 3 congiders a second boundary
value problem (16) with surface observations of the form (B6>. Lemma 5
proves the smoothness of the solution to (16), and Theorem 2 gives the
form of the optimal filter.

Smoothness Results on Random Surfaces, Let Zt be a normalized

Wiener process, D a bounded open domain in E' with closure D and

a continuous and pilecewise uniformly differentiable boundary and write
- = Y 2

R=DX[0,T]. Let D, = /3, D; = /&, D, = a"/axj. Let f(x,t)
be a stochastic process on D X [0,T] = R, The parenthesis in

(Dif(x,t)), denotes the 'mean square' derivative of f(x,t) with respect



to Xi’ if it exists., Define the norm

Zl ﬁn
”g(X)”W], p(-D-) = 13:30 ,61+--Z:'+£ =k”Dl -—-Dn g(X)”Lp,(‘ﬁ)' (1)

where ¥ e Lp(ﬁ) means that [ |v(x)|Pax = HW”E ) < w, References
- = Y
D

[1] and [é], from which Lemmas 1 and.2 are taken give conditions on the
expectations of integrals of powers of the 'mean square' derivatives,
which guarantee that f(x,t) has a w.p.l. continuous version on R, and
perhaps several continuous derivatives with respect to components of x.

The proof of Lemma 1 is contained in [2].

Lemma 1, Let the boundary oD of D have the property that any

line intersects it only finitely often. Let the functions

al(x,t,s), {Dia(x,t,s)}, {DiDja(x,t,s)}, -

(0;D Dy 0x(x,%,8)}, (D;D.DyD 0(x,%,5)]

be defined on D X [0,T] X [0,T] = R X [0,T], continuous in (x,t) for

each s, and bounded (in absolute value) by a square integrable function

of s, Let f be any function in the set (%), and let z(t) be a
— — o —_— —
Wiener process. Then / fg(x,t,s)ds £ M< » for some real number M,
o
t

and [ f(x,t,s)dzs can be defined to be a separable and measurable
— o

prdcess with parameter (X,t). There is a null set N and a'separable
t

and measurable version of" £ a(x,t,s)dzs = ¥(x,t) which, for o ¢ N, is
continuous in (x,t) and has three continuous (in (x,t)) derivatives




with respect to the components of x. These derivatives are equal to

continuous (for o ¢ N), separasble and measurable versions of

" % % ' ,
gDioz(x,t,s)dzs, (f)DiDjoc(x,t,ys)dzs, f)DiDjDka(X’t’s)dzs’ respectively,

- - ——— -

Let in addition, for some real numbers K < o, B8 > O,

A t 2
E{f f(x,t+A,s)sz - f :E‘(;x,t,s)dzS )
° © (*)
t o A 8
= [ [f(x,t+A8) - £(x,6,8)]7ds + [ £7(x,t+A s)ds = KA,
o] t

where f is any member of (%), Let g Dbe any member of the first

three sets of (¥ ). Then the continuous version (for w £ N) of

t
i) g(x,t,s)‘dzs = ¢(x,t) is Holder continuous on R, i.e., there is some
o

K(w) < © w.p.l. and a real ¥ >0 so that

|o(x+8,t+4) - o(x,%)| = K(@)[|a? + |8 7],

where l°l refers to the Euclidean norm,

Lemma 2, Let f(x,t) be a process on R,. which is continuous in

probability together with its 'mean square' derivativesup to order £

on “.ﬁo Let pf >n, p>1, and suppose ’chatf for 0=g =t

A

T,

TRecall that (2) is equivalent to

) £
E[]j; ](Dll .cos Dnn{f(x,t) - f(x,s)}).;de]q/P s K| t-s| ¢

1A

for all f.4+eetf sks g, for OssstsT
Sl n



ElleC,8) - £0,9lly ) = Kltesl (2)
b

for some real K< o and 1 £g<w and >0, Then there is a w,p.l.

continuous version of f£(+,e) on R x [0,T], and the version is Holder

continuous in +t, uniformly in X, w.p.l.

If 0<nmn< g - n/p, then the 'mean square' derivatives of order =m

have continuous versions on R w.p.l., and f(x,t) has w.p.l. a con-

°?

tinuous version whose first m x-derivatives coincide with the 'mean square!

derivatives,

For proof, see Theorem 4 in [1].



2, Filtering for a Stochastic First Boundary Value Problem

System Model, The first éystem with which we will deal has the

representa’cion-t
au(x,t) = [LU(x,t) + [ k(y,x%,t)U(y,t)dyldt + a(x,’g)dz, (+)
where
Z =2 8 (x,t)DiDJ. + 1B, (x,%)D; (5.)

and (Al) - (A7) hold,

(Al) & (the boundary of D) has a local representé,tion with
holder continuous 4*% derivatives.

(A2) The coefficients of Z, and their first two derivatives are
Holder continuous in R,

(A3) X a,. t.t EKZgi for some real > K >0,

ij=1i~j

(Ab) ¢ and its first four x-derivatives are Holder continuous
on R,

(A5) o and #£o go to zero as x — M,

(A6) k(y,%,t) is bounded, measurable and Holder continuous in
x,t, uniformly in y, and k(y,x,t) >0 as x - @,

(A7) U(x,0) is Gaussian for each x, has a bounded variance, Holder

TFor notational simplicity, we let the 'driving term® be c(x,’c)dz.
It could be 2. Ui(x,t)dzi, where the z, are independent, See

Lemma 2,2, [2].

W\



continuous second derivatives, and U(x,0) and £U(x,0) -0 as x —e‘a).
U(x,0) 1is independent of zy and of wy (to be introduced below).

In [2], Lemmas 1 and 2 are applied to (h) to give it a precise

definition and

Lemma 3:? (See [2], Lemma 3.2 for probf,) Assume (Al) - (AT7). Then

there is a random function U(x,t) on (O,Tj X D so that a version (for

o ¢ N, a null set) of the uniformly (in (0,T] x D) 'mean square' con-

tinuous functions

U(x,t), (D;U(x,t)),e., (DiDjDkU(x,t)) (6)

are continuous on (0,T] XD Ww.D.1l., thesé versions of the 'mean square'

derivatives are true derivatives. U(x,t) and £U(x,t) -0 as x -

D (for o ¢ N), U(x,t) »U(x,0) (for o ¢ N, and uniformly in x)

as t —» 0, The first three sets of (6) are Holder continuous in t,

for o ¢ N. U(x,t) is a Markov process (with values in a state space

of functions with Holder continuous second derivatives). The members

of (6) are Gaussian, and have uniformly bounded variances. The variances

of U(x,t) and of 2U(x,t) tend to zero as x - d. U(x,t) is non-

anticipative with respect to the z, ~ Process and the Ito differential

of U(x,t) satisfies (4). U(x,t) satisfies the condition (2) of

Lemma 2, for m= 3, £ = 1#, and all large p, and some finite q and

a> 0. (DiDjDkD ZU(X,‘t)) is also uniformly 'mean square' continuous in

(0,T] X R,

Tme smoothness in (A1), (A2), (A4) gives a U(x,t) with continuous
third x-derivatives, hence Holder continuous second derivatives. In -
the control problem in [2], we wanted U(x,t) to have Holder continuous
second derivatives, If only continuous second derivatives are required,

- then the differentiability requirements in (Al), (A2), (A4) can be re-
duced by 1.



The Filtering Problem, Let V’t be a nomaiized Wiener process

independent of the =z & process, and suppose that

(A8) H{E,t) is a vector-valued function which is defined and
continuous on R,

(A9) B(t) 1is continuous on ([0,T] and B(t)B'(t) = 2

5 18
strictly positive definite on [O0,T].
s N s 1/2

Define w_ = ) B(T)dw f Z Suppose that the data

o

S s s

y(s) = [ [ H(x,7)U(x,T)dx]dT + [ B(T)dw f hdT+w, s =t (7)
o o

is available at time +t, All introduced co-algebras are assumed to be

complete with respect to whatever measures are imposed on them, let+

143

_ g’c be the minimal o-algebra determined by y(s), < t, Let Py be

the measure determined by the processes U(x,s), s £t and dy(s) = h_ds

A

+ dws, s =t, and p_ the measure determined by the processes U(x,t)

o)
and dy(s) = d.ws, s £t., Let E: denote the expectation with respect

o “i’ and conditioned on ‘J’ o

t
Define
M(x,t) = BoU(x,t)
Px,y,t) = BC(Ux,5) - M, 1)) (U0, %) - M(y,%))

1

El(U(X,t> - M(X;t))(U(Y:t) - M(Y:t))-

?To be more precise, let 0 be a function space with generic element
W = (a)' ,w"), where” o' .is a member of the space of bounded functions

on R, and ' is a member of the space of bounded functions on [O,T],

with values in the Euclidean m-dimensional space E.m, where m 1is the

dimension of W % and ¥y £ The terminology is used later, See part 1°

of the proof of Theorem 1,



Let £XP(x,y3t) denote £ operating on P(x,y,t) as a function of x.
Lemma 4 proves that there is a version of the estimate M(x,t) which is,

Ww.p.l., as smooth as the signal U(x,t).

Lemma b, Assume (Al) - (A9). Then (excluding a null set independent

of (x,t)) there are on (0,T] X D continuous versions of the first four

sets of the continuous in quadratic mean functions

M, 1), (DM(x, ), (0,0.M(x,8)), (D;0,D2(x, )} (0,0 D, D ti(x,8));  (8)

also M(x,t) »M(x,0) as t -0 (and also in quadratic mean) and the

first three sets of 'mean square! derivatives are true derivatives and

t .
ElsﬁU(x,t) = #M(x,t); also M(x,t) and #M(x,t) -0 as x — P, and

the first three sets of (7) have Holder continuous versions. P(x,y,t) .

has continuous third derivatives in the components of x and y on

(0,11 x D, and P(x,y,t) and £ P(x,7,t) and 2 P(x,7,5) 50 a5

x->d or y-» dD Px,y,t) = P(x,y,0) as t-0.

Proof, M(x,t) and the (DiM(X’t))’°“°’(DiDjDszM(X’t)) exist and are.
"mean square' continuous in x-uniformly in (x,t) in (0,T] x D. Also
Ei(DiU(X,t)) = (DiM(x,t)) W.P.1l. (as well as for the next three derivatives)
for each x,t in (0,T] X D, These asseftions easily follow from estimates
of the‘following type: let e be the ith coordinate direction in En,
where n isvthe dimension of x, Then

M(x+eiﬁ¥t) - M(x,t)

B [— L - EY(D,U(x,))| Z




% U(x*é14¥t) - U(x,t)

= EllEl < - (D.iU(x,’c)) ]2
()
U(xte.At) - U(x,t)
< B L - (UG, )P -0

as A -0, wniformly for x,t in D X (0,T].

Furthermore, M(x,t) also satisfies the estimates (¥%) and (¥%%)

E [M(x,8)|" = B | E?_U(x,,t)lu s £ [U(x,$)|"
(*¥)

A

E, | (DiDjDkD zM(x,t))]“ E,| (DiDjDkD EU(X)t))lu

and

EllM(X:t) - M(X:S)lu = El]E;:_U(X:t) - E_—T_U(X,S)‘u (%)

1A

KE, | BV (U(x, ) - U(x,s))|™ + KB, | BLU(x,8) - BSU(x, )|

I\

’ u
KE, |U(x,t) - U(x,s)] " + e, (x,t,8).

For u = 2, e (x,%,8) = Kllt-s] (hence for w = 2r, € (x,%,s) = Kr]t-s]r),
The inequality on eu(x,t,s) follows from the Gaussianness, and the uni-
form positive definiteness of Zs’ which gives an upper limit on the rate
at which information can be collected,

Estimates (%), (%%), (**x) imply that the M(x,t),,.’.,(DiDjDkD M(x,1))
are uniformly 'mean square' continuous in (0,T] X D.

The statements concerning the continuity of M(x,t) and its derivatives



10

then follcw from Lemmas 2 and 3 siuce by the estimates (¥¥), (*%x) (and
obvious similar estimates for (DiM(X’t))""’(DiDjkazM(X’t))’ if U(x,t)
satisfies Lemma 2 for m = 3, so does M(x,t). Since (¥*x) is valid for
s ;.o, M(x,t) - M(x,0). |

M(x,t)’ and #M(x,t) »0 as x - d since both U(x,t) and
£U(x,t) eand their variances —0 as x - .

The asserted smoothness of P(x,y}t) and its boundary properties

follow from the continuity in quadratic mean of the elements of (8), (8"),
M(x,t) and LU(x,t).

U(X,t),o.p,(DiDjDkDBU(x,t)) (8")

(see, for example, Loeve [6], Sec. 34.2 for the type of calculations which

are required.) Q.E.D.

‘Theorem 1, Assume (Al) - (A9). Then there is a version of

A
M(x;t) which has the Ito differential w.p.l.

aM(x,t) = [£M(x,t) + [ k(&,x,t)M(¢,t)ae]dat +

. (9)
lay - ] H(e, o)M(z,0)ae]'T, L] H(E,6)P(s,%,b)aE]

and, for this version, w.pel., M(x,t) and £M(x,t) -0 as x - XD,

Furthermore, P(x,y,t) satisfies

E%(x,y,t) = [£ + £y]P(x,y,t)
+ [ k(y,e,5)P(x,¢,t)de + [ k(&,x,t)P(E,y,t)aE (1oY¥
1
-+

o(x,t)o(y,t) - [/ H(ﬁ,t)P(x,&,t)ng'Z; [J H(e,t)P(e,v,t)de].
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P(x,y,t), iXP(x,y3t) and in(x,y,t) -0 as x - dD.

Proof;, For the sake of keeping a framework which will allow a

generalization (not proved here) to non-linear systems, we take a
slightly more general approach than necessary. The non-linear problem
for ordinary stochastic Ito equations Wasvtreated in [3], however here,
we follow a slightly different approach, due to Zakai [h], which gives
the result under weasker conditions than those required in [3].

lo° Mo and. “l are absolutely conbtinuous with respect to one

another and dul/duo exp R

t
t t
...l ' x"l
Be=-3 £ hszslhsds * £ hézs iys°

Next, following Zakai [4], note that if Ellf(a3t)| < o, then (see Loeve,

[5], Sec. 2i.L)

t (!
% Eof@b,t)(d“l/dpb) Eonb,t)exp R,
E.T(0,%) = y = P . (11)
Eo(dpl/duo) E exp Ry

2%, Write

F‘t = [;f.U(X,t) + f k(Y,X,t)U(Y;t)dy]'
Then,'wzpalo, by virtue of Lemma h,

= fM(x,t) + [ k(y,x,t)M(y,t)ay.

%
EjFy
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In (11), let f(w,t) = U(x,t). Both U(x,t) and exp R are

t
stochastic integrals and

-1
-— 1
dfexp R ] = (exp Rs)hszS &Y o

Then Tto's lemma, applied to (11) yields

EU(x, ) = M(x,t) =
(33)
t t 1

EZ[U(x?Q) + £ exp RS(FSdeg(X?§)sz)][£ U(x,s)(gxp Rs)héz; )dyS]

t t -1
Eo[l * i(exp Rs)hgzs dys]

I

dchf>

o fth(x s)exp R ds + EtU(x 0)
o ? s o 7?
E' ft[U(X s)(exp R )h‘z—l
oy ’ s’ s s

™~
i

g7
dy + (exp Rs)(FSds + U(x,s)dzs)] + EOU(X,O)

and where dydz = O is used to eliminate the (dU(x,s))(d exp RS)

term from At“

.I_
As in Kushner [3] or Zakai [4], it can be shown below that,  w,p.1.

1LThe demonstration of (14), by the method of [3] requires more stringent
conditions on R, and U, then by the method of [41.

The method of [4] is applicable under the conditions of the hypothesis
of Theorem 1,

The method of [3] may also be applied, by applying it to a suitable

sequence of bounded F:,h: which converges to FS and hs in probability.
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, t . t

Ez i (exp Rs)[FSds+c(x,s)dzs] = £ [Ez (éxp RS)FS]ds (1)
v -1 t -1

E, £ U(x,s)[ (exp R )h! Z, des = £ [E_U(x,s) (exp R )hL Z, 1y

g & -1 t -1
E, £ (exp R )h! ZS dy = £ [E, (exp Rs)h; 2 Jay

where the second integrals are well-defined w.p.l, Assuming (1) now,

we proceed exactly as in [3] and get

2
dA, A 4B, A, (dB
() = ot - Ay (dB)™ (A )(dB,) (15)

t B B5 B2

t t t

where

(dBt)g = Ez[(exp Rt)h%]Z;l[Ez(exp R )b, T,

(dAt)(dBt) = [Ezu(x,t)(exp Rt)h%]Z%l[EZ (exp Rt)ht],

(9) is obtained by substituting in (12) snd using the fact ((11)) that

t t 5
Ef = [ET exp Rt]/Eo exp R, .

3°, Ssimilarly, dP is calculated from the expression
%
dP(X’;f,t) = d‘ElU(X)t)U(y;t) - dM(X, {-)M(y,t)w

To get dEgU(X,t)U(y,t), repeat the procedure starting with (11), where

we now let f(w,t) = U(x,t)U(y,t), and use the w.p.l. equalities



1k

EfU(x,t)iyU(y,t) M(X,t)aﬁyM(y,t)
By (U(x,t) - M(x, )2, (U(,8) - M(7,%))

M(x,t)in(y}t) + in(x,y,t).

+

]

The details are straightforward and are omitted. Q.E.D.



3., The Second Boundary Value Problem

Now, we consider the equation

au(x,t) = [£U(x,t) - f(x,t)]dt - o(x,t)dz, (16a)
U (x,%) +B(x,5)U(x,t) = g(x,t) + v(x,t)r(t)
v (16b)
£=2 85 5 (x,t)DiDj + 2, bi(x,t)Di
where U (x,t) is the co-normal derivative' /W = lim U(y, %) at
v y—x ()
Y€D

x on d, and (Bl) - (B8) are assumed,

(BL) X aij(x,t)gigj z K7, g? for some real X > 0.

(B2) aij(x,t) and bi(x’t) are Holder continuous in R.

(B5) f£(x,t) is continuous, and Holder continuous in x, uniformly
in t.

(B4) @ has a local representation with Holder continuous deriv-
ati{res°

(B5) Real-valued g(x,t) and row-vector valued v(x,t) are
continuous on R and r is the Gaussian random process satisfying
dr = A(t)rdt + G(t)d%, where %t is independent the =z, and w,
processes introduced earlier, and of U(x,0). A(t) and G(t) are
bounded continuous functions,

(B6) The observations dy = [éDH(g,t)U(g,t)dsg]dt + dw are taken,

where H(E,t) is conbinuous on D X [0,T], and w, 1s independent

t
of U(x,0), and dsg is the differential surface measure on ., Also
Z% satisfies (AQ), where dw = Zi/2d§, and §£ is a normalized Wiener
process.

1LV(x) is the co-normal direction at the point x on P
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(BT) Denote a(x,t,s) = [ I'(x,¢; t,s)o(t,s)dt, where T is the
D | -

fundamental solution of DU = £U. Let o(t,s) be uniformly continuous,

Let 7T(x,t,s) represent either o(x,%,s), Dia(x,t,s) or DiDjoz(x,t,s)°
Let, uniformiy in R,

L & 2 B

{_' T (x,t,7)at + [ [v(x,t,1) - y(x,t,7)]%dc = K|t -4 (17

o

for some real X and B > 0. Let DiDjDkY(x,t,s) satisfy (17) uniform-
ly for x,t,t' in any compact subset of D X [O,T]e.

(B8) Let U(x,0) be differentiable w.p.l., and let a,.(x,0) be

1J
continuously differentiable in some neighborhood of .

Lemma 5, Assume (Bl) - (B8)., Then there is & random function

U(x,t) which has a version with the following properties, w.p.l., (where

the null set doesn't depend on x,t),

(a) U(x,t) is continuous' on R (also in quadratic mean),

(DiU(x,t)) is continuous on compact subsets of D x (0,T] (also in

quadratic mean),

(b) The (DiDjU(X,t)) are continuous on compact subsets of

D X (0,T],

(¢) - U(x,t) has an It differential which satisfies (16a), for

t >0,

(d) U(x,t) satisfies the boundary condition (16b), and U(x,t) -

U(x,0) as - 0,

(e) The variances of U(x,t), (DiU(x,t)) (in compact subsets of

D x(0,T7]) and (DiDjU(x,t)) (in compact subsets of D x (0,T]) are

+DiU(X,t) on O is defined as lim.DiU(x,t)°
: X
A



L7

uniformly bounded,

~o
and =

(f) U(x,t) is non-anticipative with respect to the Zy %

Processes,

Proof, The treatment in Friedman [T7], (Theorem 2, p, 14 and
Corollary 2, p. 147) will be followed, with the few modifications re-

quired by the stochastic nature of the problem taken into account, Define

t t
T(x,t) = £ dzsoz(x,t,s), ‘ri(x,t) = £ szDioc(x,t,,s), .
t t
Yij(x,t) = (f) szDiDjoz(X,t,s), ‘rijk(x,t) = £ dZSDiDjDka(X’t’S)°
t
Let k(x,t) = [ dzsp(x,t,s), Then
o
t
Ekz(x,t) = [ dtp2(x,t,s)
o (18)
Ekzn(x,t) = Kn[Eke(x;,t)]n, for some real KX
2 ¥ 2 & 2
E[k(x,t') - k(x,t)] = {; dsp (x,t",s) + [ ds[e(x,t',8) - p(x,t,s)]".,
o .

Note also that Yi(x,t) is the 'mean square' derivative of
To(x,t) with respect to the it! coordinate of x in D x (0,T], and
. . , s .

Tijk(x,t) is the 'mean square' derivative of ij(x,t) with respect

to the ith

coordinate of x in D x (0,T].
Then, i7" the estimates (18), (B7) ac? Lemma 2, there is a version
of y‘o(x,t) which (we.p.l.) is continuous on RE; it has continuous

. derivatives DiYO(X,t) = (Diro(x,t)) = Yi(x,t) on R and continuous
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second derivatives DiDon(x,t) = Ty (x,%) = (DiDj‘fo(x,t)) in compact
subsets of D x [0,T]. Furthermore, for (x,t) ¢ @ x (0,T], O/ I(x)

= 2, cpi(x)Di, vhere @, are Holder continuous, Hence, the function

]
-W%{T.— f dzsoz(x,t,s) = Yv(x,t)
)

also has a continuous w.p.l. version on & X (0,T], and in fact, can

t
. s . aux,t,s)
be identified with £ dzs Wl— o Next Dta(x,t,S) = fLa(x,t,s),

t -
s<t, x ¢ ®, and, by (B7), [ (Dta(x,t,s))gds SK<w on R, Also
O

a(x,t,8) is continuous on K and tends to o(x,t) as s T t. Hence

t t
daf oc(x,t,s)dzs = cr(x,t)dzJG + [f at(x,t,s)dzs]dt = G(X’t)dzt +
o )

t
£ {) alx,t, s)dzsdt.

From what has been said the function F(x,t) defined by

a(x,t3%,0) a(x, ks
' X

t
t
F(x,t) = ]f) Wu(g,o)dg - £ ar [ Ev—ras—z_z"_)f(g,rc)dg

B(x,t)[ T'(x,e3t,0)U(E;0)de
D

+

t
B(x,t)[ dtf I(x,e;t,T)f(E,T)dT - B(X,t)yo(x,t) - g(x,t)
o D

- v(x,t)r(t)

is continuous and uniformly bounded w.p.,l. on & X (0,T] (see Friedman
[7], p. 145, where continuity is shown for a similar deterministic problem),
Then, there 1s a continuous (and uniformly bounded (w.p.l.) solution on

D x [0,T] %o the equation (see Friedman [7], egn. 3.6, p. 145))
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t
X(x,t35,7) .
) =2 at [ FimtBT) 4 B, 6)00x, 858,70 (¢, )8
905 t) ) an[O,T][ x ¢

+ 2F(x,t)

where dSg is the differential surface measure on . Finally, (see

[7], Theorem 2, p. 144 and Corollary 2, p. 147), it is evident that the-

function

t
U(x,t) = [ dTéDP(x,g;t,T)@(g,T)dsg + [ I(x,€5%,0)U(E,0)dt - 1 _(x,%)
o D

t
- [ azf r(x,t;t,7)F(E,T)dE
o]

has the properties required. In particular, F(x,t) is a non-anticipative
functional of the z, and %t processes, which implies that o¢(x,1t)
and, in turn, U(x,t), are also non-anticipative. Q.E.D.

Now, redefine I, to be the measure determined by U(x,s), s =%, and
dy, egiven by (B6) for s = t, and dr(s), s £ t, given by (B5). Let Mg
be the measure determined by U(x,s), r(s), s =t, and w(s), s = t.

Let R(t) denote the vector Eir(t), PR(t) denote the covariance
matrix Ei(r(t) - Eir(t)) (r(t) - Egr(t))' and PMR(x,t) denote the

covariance Ez(U(x,t) - EKU(x,t))(r(t) - Eﬁr(t));

Theorem 2, Assume (BL) - (B8)., Then there is a version of M(x,t)

such that w.p.l.. M(x,t) and its first 'mean square' (or true) deriv-

ative are continuous w.p.l. on R and D X (O,T], resp, The second

tmean square!' (or true) derivatives of M(x,% are continuous in D X
q - ]

(0,T] and M(x,t) has an IS differential which satisfies



aMm(x,t) = [£M(x,t) - £(x,t)]1dt +

(1%2)
-1 .
[ay - [ H(e,t)M(e,t)a8, 12 [] H(E,t)P(E,x,t)d8,].
> Tty
Also
T+ B, 0, ) = £(5,%) + R(x,t) (190)

-1
drR(t) = AR(t)dt + [dy - fa)ﬁ(g,t)M(g,J:;»)dsg]:\;t ngﬁ(g,t)Pm(g,t)dsg (20)

P(x,y,t) = (£, + £ )P(x,7,%) + o(x,t)o(7,%)
1

- (21)
- [g)H(g,t)P(x, E,t)dsg:]rzt [éDH('g',,t)P(g,y,t)ng]

isR(t) = ATPL(£) + B_(E)A + G(£)G" () -

-1 .
- T B8 DR (6,613 T [ (5, 0B g (5,6)a8,]

B (b)) = 2B (x,6) + AP (x,t)
-1
- [é}H(g,t)P(X, £,)ds, ] "y [fa])H(g,t)Pm(E?t)dsg]

P(x,y,t) satisfies the boundary conditions for (x,t) on & X (0,T],

BPV(x,y,t)
W + B(x,t)P(x,y,t) = v(X’t)PMR(X’t)

and PMR(x,t) satisfieg the (vector) boundary conditions
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BPMR(x,t)
P + B(X,t)th(x,t) = v(x,t)?R(t).

“Proof, The details are very similar to those of Theorem 1 and Lemma 4

and are omitted. Only the boundary conditions will be dlscussed By Lemma 5,

and a result smllar to that of Lemma H 1t is easy to show that there is
a version of M(x,t) so that (w.p.l.) M({x,t) is continuous on R (and
in quadratic mean) (DiM(X,t)) = DiM(x,’c) is continuous on T x (0,T]
(end in quadratic mean). Similarly, for x e D, it can be shown that
M(y,t)/d(x) and A(y,t)/dV(x) are continuous in quadratic mean

on D x (0,T] (as functions of (%¥,t)). Then EE(&I(y,t)/BV(X}j

= M(y,t)/V(x), where the last term is defined by

lim dM(y,t)/dv(x) = AM(x,t)/ov(x). .Also lim  &U(y,t)/ v (x)
y—x,yeD y-x,y€eD

setisfies (w.p.1.)

_.<_xf_t> + B(x, 8)U(%,t) - v(x,5)r(t) - g(x,t)]
= SRS B, o) - V0 BIR(E) - a0
The equation
E,[U(y,t) - M(y, )] 'a—z—ﬁ‘*a](x 8+ Bk, 60, t) - v(x,t)z(t)
- g(x,t)] =
implies
P(x,y,t)

W— + B(x,t)P(x,vy,t) - v(x,t)PRM(y,t) =0
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Also

J(x,1t)

E[r(t) - R(t)][goe

+ B(x,t)U(x,t) - v(x,t)r(t) - g(x,t)] = 0

implies

BPMR(X,’G)
FE— + ﬁ(x,t)PMR(x,t) - v(x,t)PR(t) = 0,

End of details.
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